cocoatree.deconvolution.extract_independent_components

cocoatree.deconvolution.extract_independent_components(coevo_matrix, method=None, n_components=3, nrandom_pySCA=10, sequences=None, learnrate_ICA=0.1, nb_iterations_ICA=100000, freq_regul=0.03, verbose_random_iter=True)[source]

Extract independent components from a coevolution matrix

The current method is fully applicable to SCA analysis. For other metrics, we set n_components = 3 (to improve)

Arguments

coevo_matrixnp.ndarray

coevolution matrix

sequenceslist of sequences, optional, default: None

when using pySCA’s strategy to estimate the number of components, sequences needs to be provided.

method{None, “pysca”}, default=None

Methods to use to estimate the number of components to extract. By default, relies on the number of components provided by the user.

n_componentsint, default=3,

Number of independent components to extract

nrandom_pySCAint, default=10,

Number of MSA randomizations to perform if method=’pySCA’

learnrate_ICAint, default=0.1,

Learning rate / relaxation parameter used if method=’pySCA’

nb_iteration_ICAint, default=100000,

Number of iterations if method=’pySCA’

freq_regul : regularization parameter (default=__freq_regularization_ref)

verbose_random_iter : Boolean

Returns

idpt_componentsndarray of shape (n_components, n_pos)

corresponding to a list of independent components

Examples using cocoatree.deconvolution.extract_independent_components

Perform full SCA analysis on the S1A serine protease dataset

Perform full SCA analysis on the S1A serine protease dataset